

PAOMFIT

20088

Doug Rosen Residence - Pier \& Pile Design

5995 SE $30^{\text {th }}$ Street
Mercer Island, Washington 98040

$12 / 2 / 2020$
The engineering seal on these calculations are for the items listed below:

- Design of pier framing members: cap beams and joists.
- Analysis of the proposed pile splice and timber riser connections.
- Design of the Jet Ski lift attachments.
- Design of the steel piles supporting the moorage roof.

Design is in accordance with the 2015 International Building Code and 2015 International Existing Building Code. Our scope of work does not include analysis and design of the grating, bulkhead, connection to grade, moorage cover roof and/or as associated connections.

The site information, dimensions and plan layout, has been provided to us by Waterfiront Construction, Inc.

$$
\begin{aligned}
& \text { Gratim } \\
& 4 \times 8 \times 5 \mathrm{Cl} \\
& \mathrm{MIS}
\end{aligned}
$$

$$
2,0,5=
$$

$$
=6 p 55
$$

$$
15 p 5 f
$$

-8nsf
\qquad
\qquad Sum 120200 sheet: \qquad
Project Name: \qquad posen vier G.S. \qquad
Comp. By: \qquad II \qquad

31
roped sine 2×8 ot $16^{\prime} 3, \mathrm{c}$.
Assume $D F$ No. 2, PT.
Cleserspn $=101$
Supple Sam

$$
\begin{aligned}
& M=w * L^{2} / 8=90.7 * 10 \sqrt{8}=1134 \#+t \\
& \omega=\left[8 p \operatorname{sop}+60 p f \rho_{L}\right] * 1.33+t=90.7 \mathrm{pH}
\end{aligned}
$$

$$
\begin{aligned}
& 5 x=1.5 * 7,25 \% 6=12,14 \mathrm{in}^{3} \\
& 1 / \sigma=\left(16=900 p s s^{2}\right) *(-r=1.5) *(C=11.2) *\left(C_{1}=0.8\right)=994 \rho 5 \circ^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& E=(E-1.6 * 1312] \times(C)=0.95)=1.52 * 10^{6} \text { Ps }^{\circ} \\
& t=1.5 \times 7.25 / 2 / 2=47.66 \mathrm{mt}
\end{aligned}
$$

\qquad 20088 \qquad
\qquad
\qquad
Project Name: Paseny pier
\qquad Chk.By: \qquad

32
Proposet-ix $=4 \times 8+16^{\prime} \alpha r$
As Some $D F N_{0}, 1$ PIT.

$$
\text { Clear } \quad \text { rem }=16.8^{\prime}-5.5=16.4^{\prime}
$$

Single span

$$
\begin{aligned}
& M=\omega 14 \angle / 8=90.7 \mathrm{fi} *(10,4 \mathrm{ft}) \wedge 2 / 8=30.49+\mathrm{Ft}
\end{aligned}
$$

$$
\begin{aligned}
& f l=M / 5_{x}=3049 \times 12 / 30 \cdot 7=11921 s_{1}^{\prime} \\
& 3 x=3.5 * 7.25 \wedge 2 / 6=30.7 \mathrm{~cm}^{3} \\
& F G=\left(F_{r}+1000 p s^{\prime}\right) *\left(C_{1}=1.1 B\right) *\left(C_{F}=1 . B\right) *\left(C_{i}=0.8\right)=1196 \mathrm{psi} \\
& \Delta_{L L}=\frac{50-L^{4}}{384 * E \times 2}=\frac{5 *\left(80 . \frac{\pi * T i}{f t i n}\right) *(6.4 \mathrm{ft} * 12 \mathrm{ft}) \uparrow 4}{364 * 1.62+1046 \rho \mathrm{~L}^{\prime} * 11.1 \mathrm{im}^{1} 4}=0.723 \mathrm{~cm} \\
& E=(E=1.7 * 10 \wedge 5 \text { م }) *\left(C_{1}+0.95\right)=1.62 * 1016 p_{5}! \\
& \text { I. }=3,5 * 7.25 \uparrow 3 / 2=11.1 / \mathrm{cm} \mathrm{~cm}^{4} \\
& \Delta L_{\text {ALLeN }}=\frac{L}{360}=\frac{16.4 f t * 12 \mathrm{imft}}{360}=0.547 \mathrm{im} \\
& 4 \times 80 F \mathrm{NK.2} \text { PT at } 160.6 F_{1}<F G \quad \text { OiK. } \\
& \Delta_{L}>\Delta_{L L A W} \quad 32.2 \% \text { Over }
\end{aligned}
$$

$4 \times 8 \mathrm{D}+10.2 \mathrm{P}+\alpha \mathrm{K}, \mathrm{C}$. reid $\Delta L_{L}=5 \%$ over N, G

$$
\text { Use } 4 \times 80 \text { FRo.1Ptat } 12 \text { ha. }
$$

Project No: \qquad 20088 \qquad Rosem Pier
Project Name: \qquad G.S. \qquad
Comp. By: \qquad J3
Contents: \qquad P: 206.281.7500 www.PacEngTech.com

03
Proposed sine 4×8 at $16^{\prime 2} \mathrm{~b} . c$
Asume DFND 2 PT

$$
\text { Clear Span }=12.8^{\prime}-5.5=12.4^{\prime}
$$

srimple spon

$$
M=u^{\mu} \times L^{2} / 8=4 p .7 p++(2.4+t) / 2 / 8=17437 f t
$$

$$
\begin{gathered}
f_{1}=1 / 1 / 5 \times 1743 * 12 / 30.7=681 \rho \mathrm{sic} \\
5 x=3.5 * 7.25^{2} / 3=30.7 \mathrm{~m}^{3}
\end{gathered}
$$

$$
F_{G}^{Y}=\left(F_{G}=900 p_{i}\right) \times\left(C_{r}=1.5\right) \times(C=1.3) *(C=0.8)=1076 \mathrm{Ps}
$$

$$
E=\left(E=1.6 * 10^{*} 40 .\right) \times\left(c_{6}=0.95\right)=1.52 * 10^{6} 551
$$

$$
I=3.5 * 7.25 \wedge \sqrt{12}=11.1 / \mathrm{m}^{4}
$$

$$
\Delta_{\text {LL, Allow }}=\frac{L}{360}=\frac{12.4 \mathrm{ft} * 12 \mathrm{im} / \mathrm{ft}}{360}=0.413 \mathrm{~mm}
$$

4×8 DFN, 2 xT $160, C \quad$ Fl 4 FU
or better $\quad \Delta_{L} L \leq \Delta_{L}$, aitom
soists are adequate.

$$
\begin{aligned}
& \text { Joist teartion }=90.7 \text { P1F * } 12.4 \mathrm{ft} 2=562 \text { \# } \\
& \text { Lue simpan LUs } 46 \text { Fare Mount hangers, oaj }=88,5 \neq 2
\end{aligned}
$$

\qquad
\qquad
\qquad Ot: \qquad
Project Name: \qquad 18350 (1, 5 . Chk.By: \qquad
\qquad BI \qquad
(B)

Proposed sine 6×8
Assume DF No. 2
Centerfocemter spam $=15.2$.
Clear spam $* 15.2^{\prime}-1=14.2^{\circ}$
Simele span

$$
\begin{aligned}
& M=\omega+2 z_{8}=425 \mathrm{PFF} *(4,27)^{2}=8=10,712 \mathrm{~F}, \mathrm{Ft} \\
& w=[\text { bops. } 2+8 \text { pf.p }] *\left(\frac{12.5}{2}\right)=425 \text { pf }
\end{aligned}
$$

$$
\begin{aligned}
& s_{x}=5.5+7.25 \%=48.2 \mathrm{~cm}^{3} \\
& F^{\prime}=\left(F_{C}=875 \mathrm{pi}\right) \times\left(c_{i}=0.8\right)=700 \mathrm{psi}
\end{aligned}
$$

$$
\begin{aligned}
& F^{\prime}=1.3 * 10^{6} p s+\left(C^{\prime}=0,95\right)=12.35 * 10^{6} \rho \mathrm{~s} \\
& I=5.5 * 12.253 / 2=175 \mathrm{im}^{4} \\
& \Delta \text { Lhenan }=\frac{L}{360}-\frac{14.2 f+12 \mathrm{ime}}{360}=0.473 \mathrm{im} \\
& 6 \times 8 \text { DF NO. } 2 \text { R.T FLSFU' } 281 \% \\
& \Delta L>A \text {, ALLL } 28 \% \\
& 6 \times 12 \text { DF INo. } 1 \text { P. T. Regl }
\end{aligned}
$$

Project No: \qquad 20088 Date: \qquad Posen pier
Project Name:
Comp. By:
\qquad BR

Beam sine Prohertios

$$
\begin{aligned}
& A_{n}=319.9 \mathrm{~m}^{2} \\
& S_{x}=48.2 \mathrm{~mm}^{3} \\
& \text { ix }=174.7 \mathrm{in} 4 \\
& \text { Mater al Propettes } \\
& E \frac{6}{2}=(F,=8 \geq 5,)+(\angle 1=0.8)=70 \% \rho^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& X_{\text {TO }}=0.412 \mathrm{im} \rightarrow L / 250 \\
& \Delta L L=0.364 \mathrm{~m} \rightarrow 1283>1 / 360 \\
& 6 \times 12 B F N 01 P+B \in q d
\end{aligned}
$$

\qquad 20088 \qquad
\qquad Of:
Project Name: Rosem Pier
Comp. By: \qquad G. 5. \qquad
Contents:

BU
Propose side 6×8
Assume DF No 2 PT.
Clear span $=11.2^{\prime}-1^{\prime}=10.2^{\prime}$
simple spam

$$
\begin{aligned}
& M=\omega-L^{2} / 8=292 \text { PIs }(0.2+f)^{12} / 8=3797 \Rightarrow \mathrm{Ft} \\
& \omega=\left[60 \mathrm{psf}_{2}+8 \mathrm{psf}, \mathrm{p}\right] *(8.6 / \mathrm{L})=292 \mathrm{plf}(258 \mathrm{flF}, \mathrm{t}) \\
& f:=M / 5 \times=3797 * / 2 / 48.2=945 \rho_{5} \\
& S_{x}=5.5 * 7.25^{\wedge} 2 / 6=48.2 \mathrm{im}^{3} \\
& F^{\prime} u=\left(F_{1}=875 \mathrm{psin}^{\prime}\right) \times\left(c_{i}=08\right)=700 \mathrm{ps}
\end{aligned}
$$

$$
\begin{aligned}
& E=\left(3 \times 10^{6} \mathrm{PSi}\right) \times\left(C_{i}=0.95 i\right)=1.235 * 10^{6}{ }_{5 i} \\
& I=5.5 * 7.25{ }^{\wedge} / 12=175 \mathrm{~m}^{4} \\
& A L, 41 \text { Loo }=\frac{L}{360}=\frac{10.2 \prime * 12 \text { in } 6 t}{360}=0.34 \mathrm{~m} \\
& 6 \times 8 \mathrm{DF} N_{D} .2 \text { PcT. }+6>F \%, 16 \\
& \Delta_{L L}<\Delta L_{\text {, and }} \\
& 6 \times 10 \text { DF No. } 2 \text { P.T. is regis }
\end{aligned}
$$

\qquad 20088 \qquad
\qquad Of: \qquad
Project Name: Rosem Pier
\qquad

Comp. By: \qquad Gi. Chk.By: \qquad

Bb
Proposed size Exit 6×8
Imsulequite by inspection.
Steel member is required for commedtomto tree le

(1)

$$
\begin{aligned}
& \omega_{2}=\left[60 P F_{1}+s_{1} s_{1}, 0\right] *\left(13.6^{\prime} / 2\right)=462 \mathrm{PFF} \\
& M_{\text {max }}=6647 \nRightarrow t t \\
& V_{\text {max }}=2645 \% \\
& \text { Reactipm } 1=1694 \text { \# } \\
& \text { Reaction } 2=524.4 \# \\
& \text { Reaction } 3=1804 \#
\end{aligned}
$$

Assume full literal support at to, flange of steelweam

Try MC 10×22

$$
\begin{aligned}
& \vec{z}=23.9 \mathrm{~cm}^{3} \\
& I=102 \mathrm{in}^{4} \\
& E=29 * 10^{6} p: \\
& F_{y}=50.000 \mathrm{psi}^{2} \\
& \Omega=1.67 \\
& M_{a}=M_{n} / \Omega=M_{p} / \Omega=F y z / \Omega \\
& Z_{r e q} l=\Omega M a / F_{y}=2.66 \mathrm{in}^{3}<23 . \mathrm{gm}^{3} 0 \mathrm{~K} \text {. } \\
& \Delta t_{0 T}=0.052 \mathrm{im} \text { er. } \\
& \Delta_{L L}=0.046 \mathrm{~cm} \quad 0.1 \\
& \text { Use MC1O } \times 22 \text { for B6 }
\end{aligned}
$$

Refer to call ahead for support connection

Project No: \qquad 20088 \qquad $\operatorname{Tun} 1,2020$ Sheet: \qquad Of: \qquad
Project Name: \qquad Rose Pier aiS. \qquad
\qquad B6 connections
\qquad P: 206.281.7500 www.PacEngTech.com

136 comeneriams
Tr ta demand on mid support, $2=52.44 \%$
lur (2) $\sqrt[3]{4 / \phi}$ A 307 bolt in single shear|

\qquad 20088 \qquad
\qquad
\qquad
\qquad B6 connections
\qquad

B6 Cen nections
Total demand om enl support. $3=1804 \#$

- washer

$$
\left.\frac{2}{3}\left(1{ }^{n}+1\right)^{\prime}\right)=3.7
$$

$$
\begin{aligned}
& \text { Mascot }-1804 \neq 11^{\prime \prime}+37014=2 \\
& 7 / \angle=2706 \mathrm{im} / 3.7^{4}=7317
\end{aligned}
$$

Tension resisted by top washer
$2^{\prime \prime} \phi$ washer

$$
\begin{aligned}
& F^{\prime} C_{\perp}=625 \text { psi* }\left(C_{i}=1.0\right)=625 \text { psi } \\
& F_{C L}=625 \text { psi } * 2.54 \mathrm{in}^{2}=1588 \# \\
& \text { Bearingarea }=\pi / 4\left(2^{2}-(3 / 4-1 / 8)^{2}\right)=2.54 \mathrm{in}^{2}
\end{aligned}
$$

shear resisted by lots

$$
z_{1}=940 \# \quad 0, k .
$$

Use the connection shown alroved
\qquad
\qquad
\qquad
Project Name: Posen a. 5 . \qquad
\qquad BT \qquad

$$
\begin{aligned}
& \text { Shear load Per foot }=\sqrt{\left.2163 H_{f t}\right)^{2}+\left(\frac{2215 \%}{7^{\prime \prime}}\right)} 1150 \text { \# } \\
& \text { Use (}-3 \text { 4 } \varnothing \text { Asof 40/ts as ćlustrated above } \\
& \text { IISC The } 7-1 \\
& \mathrm{rm} / R=5.97 \mathrm{kis}
\end{aligned}
$$

\qquad
\qquad
\qquad

TRY 4×8 DE NO. 1 PT.

$$
\begin{aligned}
& M=2526 \mathrm{FFt} \\
& V=1583 \mathrm{~F} \\
& \Delta \text { or }=0,140 \mathrm{im}
\end{aligned}
$$

PT. 4×8 PF NO. 1 is adequate, Refer to call for J2
\qquad 20088 \qquad
\qquad Of: \qquad
Project Name:
\qquad G. 5
\qquad Moorage cover Piles

Moorage cover Piles
wind loads. per we
Assume 10 ft height of loot above water under moorage cover Assume 15 ft length of lat beater d Letweemples.
Boat Lam be analyzed as lewrise enclose building

$$
\begin{aligned}
& \text { AShE } 7-10 \text { iN. } 28 \text { Port } 2 \\
& \text { Risk category I/II } \\
& \text { Burse what mised-10 mph } \\
& k z=1.0 \\
& \text { Expobre attgory }=C \\
& \lambda=1.21
\end{aligned}
$$

$$
\begin{aligned}
& \text { Wesigm for nome }\left(\rightarrow P_{s 30}=12,7 \mathrm{paf}\right. \\
& P_{5}=2 K_{0}+P_{30} \\
& =1.21 * 10 * 12.76 \mathrm{f} \\
& =15.4 \text { ps on boat } \\
& \text { ops on Roof }
\end{aligned}
$$

wind loads from $=16$ pst loft $-15 \mathrm{ft} / \mathrm{s}=1200$ What on pile.

Wind In ods from Roof cover

Wind loud from Noptcoler $=8.5 \mathrm{sqft} * 8$ psf $=68 \#$
\qquad 20088 \qquad
\qquad Of: \qquad
Project Name: Rosem Pier G. 5 . Chk.By: \qquad
\qquad
\qquad Moorage Cover piles.
\qquad

Moorage Goer Piles
Seismic bad refile
Analy3- max lacided pile
Bead dad toil to pile
Marcie cor

$$
\left(1 p_{p, f}, \mathrm{n}\right) * 14 \mathrm{ft} * 20 \mathrm{ft} \quad \therefore \quad 700 \mathrm{f}, 0
$$

- Pier loud

Load from B6 interior super connection $=3944 \#$ ratal

$$
=464 \%, D
$$

$$
C_{3}=0.75
$$

Seismic laadsom pile
Moorage cover $=525$ H, E

$$
\text { Pier }=348 \# E
$$

Summary, ut lo a de on pile

Fy (ksi)	Max unbraced length, $\mathrm{Lb}(\mathrm{ft})$	r		k		4.71*sqrt(E/Fy)		kL/r		Fe (ksi)	Fcr (ksi)		$\mathrm{Pn} / \mathrm{Lc}$ (K)	$\mathrm{Mn} / \mathrm{Qb}$ (KFT)
45	16.0		3.0		1.2		119.6		78.1	46		30.1	141.6	457

Seismic Loads 2015 IBC ASCE 7-10
Force Calculation

Pacific Engineering
Technologies, Inc.

Spectral Response Spectra:

$\mathrm{S}_{\mathrm{s}}=$	140.7	$\%$ Spectral Response Acceleration $\mathrm{S}_{1}=49$ $\%$ Spectral Response Acceleration

$\mathrm{F}_{\mathrm{a}}=1.00$
$\mathrm{~F}_{\mathrm{v}}=1.50$
$\mathrm{TL}=6.00$

$S_{M S}=1.407$
$S_{M 1}=0.735$

$\mathrm{S}_{\mathrm{DS}}=0.938$
$\mathrm{~S}_{\mathrm{D} 1}=0.490$

$\mathrm{S}_{\mathrm{a}}=$| 0.938 |
| :---: |
| D |

$$
C_{s}=0.750
$$

$$
C_{\text {smin }}=0.041
$$

$$
C_{\text {smax }}=1.293
$$

Seîsmic Response coeff., $\mathrm{C}_{\mathrm{s}}=\mathbf{0 . 7 5 0}$
Base Shear, $V=C_{5} \times(W)$

Building Period:

	OTHER		Structure Type
	37.5	ft .	Structure Height
$\mathrm{T}_{\mathrm{a}}=$	0.30	sec.	Fundamental period $\mathrm{T}_{\mathrm{a}}=\mathrm{C}_{t}^{*}\left(h_{n}\right)^{*}$
$\mathrm{T}_{0}=$	0.10		$T_{0}=0.2^{*}\left(S_{\text {D }} / S_{\text {DS }}\right)$
$\mathrm{T}_{\mathrm{s}}=$	0.52		$\mathrm{T}_{\mathrm{S}}=\mathrm{S}_{\mathrm{D} 1} / \mathrm{S}_{\mathrm{DS}}$
$\mathrm{C}_{\mathrm{t}}=$	0.02		
$\mathrm{x}=$	0.75		
$\Omega=$	1.25		
$\mathrm{Cd}=$	1.25		
$\rho=$	1.00		Redundancy factor
$\mathrm{Eh}=$	0.750	\times DL	\#REF!
$\mathrm{Ev}=$	0.188	\times DL	\#REF!
Dead Load, W =	\#REF!	kips	

$\mathrm{T}_{\mathrm{a}}=0.30$
$T_{0}=0.10$
$\mathrm{T}_{\mathrm{s}}=0.52$
$\mathrm{C}_{\mathrm{t}}=0.02$
0.75
$\Omega=1.25$
$\mathrm{Cd}=1.25$
$\rho=1.00$
$\mathrm{Eh}=0.750$
$\mathrm{Ev}=0.188$
Dead Load, $\mathrm{W}=$ \#REF! kips

Site Coefficient Adjustment for S_{s}
Site Coefficient Adjustment for S_{1}
Long Period
$\mathrm{S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}}{ }^{*} \mathrm{~S}_{\mathrm{s}}$ Maximum Spectral
Response Short Periods
$\mathrm{S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{V}}{ }^{*} \mathrm{~S}_{1}$ Maximum Spectral
Response 1 Sec. Periods
Maximum Design Spectral Response Short Periods
Maximum Design Spectral Response
1 Sec . Periods
Design response spectrum.
Design Category
$\mathrm{C}_{\mathrm{s}}=\mathrm{S}_{\mathrm{DS}} /(\mathrm{R} / \mathrm{I})$
$\mathrm{C}_{\text {smin }}=0.044^{*} \mathrm{~S}_{\mathrm{Ds}}{ }^{*} \mid$
$\mathrm{C}_{\mathrm{smax}}=\mathrm{S}_{\mathrm{D} 1} /\left(\mathrm{T}^{*}(\mathrm{R} / \mathrm{I})\right)$

ASCE 7-10
Table 20.3-1 pg. 204
Table 1.5-1 pg 2
Table 12.2-1 pgs. 73-76
Table 12.2-1 pgs. 73-76
Table $1.5-2$ pg. 5

Figure 22-1 pg. 212
Figure 22-2 pg. 214
Table 11.4-1 pg. 66
Table 11.4-2 pg. 66
Fig 22-12, pg. 224
Section 11.4-1 pg. 65
Section 11.4-2 pg. 65

Section 11.4-3 pg. 65
Section 11.4-4 pg. 65
Section 11.4-5 pg. 66
Table 11.6-1\&2 pg. 67

Section 12.8.2.1 pg. 90

Table 12.2-1 pgs. 73-77
Table 12.2-1 pgs. 73-77
Section 12.3.4, pg. 83
Section 12.4.2.1 pg. 84
Section 12.4.2.2 pg. 86

Load Combinations

ASCE 7-10 Section 2.4.1

$2 \mathrm{D}+\mathrm{L}=1.000 \mathrm{D}+1.000 \mathrm{~L}$
$4 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}=1.000 \mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}$

ASCE 7-10 Section 12.14.3.1

Cs	0.750
Sds	0.938
Ω	1.25

| $5(1.0+0.14 S d s) D+0.7 Q e * \Omega$ | $=1.131 \mathrm{D}+0.875 \mathrm{Qe}$ |
| :--- | :--- | :--- |
| $6 \mathrm{~b}(1.0+0.105 S d s) \mathrm{D}+0.525 \mathrm{Qe} \mathrm{e}^{*} \Omega+0.75 \mathrm{~L}$ | $=1.098 \mathrm{D}+0.656 \mathrm{Qe}+0.750 \mathrm{~L}$ |

ASCE 7-10 Section 2.4
$5 \mathrm{D}+0.6 \mathrm{~W}+\mathrm{H}=1.000 \mathrm{D}+0.600 \mathrm{~W}+1.000 \mathrm{H}$

20088

5995 SE 30th St, Mercer Island, WA 98040, USA

Latitude, Longitude: 47.5837898, -122.2519332

Type	Value	Description
S_{S}	1.407	MCE
S_{1}	0.49	MCE ground motion. (for 0.2 second period)
S_{MS}	1.407	Site-modified spectral acceleration value
$\mathrm{S}_{\mathrm{M} 1}$	null-See Section 11.4 .8	Site-modified spectral acceleration value
S_{DS}	0.938	Numeric seismic design value at 0.2 second SA
$\mathrm{S}_{\mathrm{D} 1}$	null-See Section 11.4 .8	Numeric seismic design value at 1.0 second SA

Type	Value	Description
SDC	null-See Section 11.4.8	Seismic design category
$\mathrm{Fa}_{\text {a }}$	1	Site amplification factor at 0.2 second
Fv_{v}	null-See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.602	MCE $_{\text {G }}$ peak ground acceleration
FPGA	1.1	Site amplification factor at PGA
PGAM	0.662	Site modified peak ground acceleration
T_{L}	6	Long-period transition period in seconds
SsRT	1.407	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.56	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	3.287	Factored deterministic acceleration value. (0.2 second)
SIRT	0.49	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.547	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	1.335	Factored deterministic acceleration value. (1.0 second)

Type	Value	Description
PGAd	1.132	Factored deterministic acceleration value. (Peak Ground Acceleration)
$C_{R S}$	0.902	Mapped value of the risk coefficient at short periods
$C_{R 1}$	0.896	Mapped value of the risk coefficient at a period of 1 s

\qquad
\qquad Sheet:_of: \qquad
Prober Nemp PLLE SPLICE Engineering
\qquad
Contents: \qquad

CHEAK PIUE SPLICS $10^{\prime \prime} 1$ PILES
WOON PILE BENDING

$$
\begin{array}{ll}
10^{4} \phi \\
S=\pi r^{3} / 4=\pi s^{3} / 4=98.2 \mathrm{in}^{3} & \frac{12^{\prime \prime} \phi}{S=170 \mathrm{in}^{3}} \\
F_{b}=1260 P S 1 \text { DF } & F_{b}=1260 \mathrm{PS} \\
F_{b} S=10.3 \mathrm{~K}^{\prime} & F_{b} S=17.8 \mathrm{~K}^{\prime} \quad(736 \mathrm{inc} 200 \mathrm{sE})
\end{array}
$$

Chéck splile to have equivilant bending somlength as woos
check pmaller to bolts: plate beajoing

$$
\begin{aligned}
& L_{\text {plar }}^{3 / 8^{\circ}}=1 / 3 \text { ciRLUM }=2 \pi r / 3=10 . S^{\prime \prime} \\
& d=75 \circ \times 9=7.5^{\prime \prime} \\
& I=.375 \times 10.5 \times(10.5 / 2)^{2} \times 2=217 \mathrm{in}^{4} \\
& S=I / y=217 / 7.5 / 2=57.9 \mathrm{in}^{3} \\
& F_{y} S=451 K S 1 \times 57.9 / 1.67=1560 \mathrm{~K}^{n}=130 \mathrm{~K}^{\prime}>10.3 \mathrm{~K}^{\prime}
\end{aligned}
$$

Yoject No: \qquad Sheet: \qquad Of:
\qquad Conks. \qquad
Contents: \qquad

CHECK PILE SPLICE (CONT)
CALK PERPESNICULAR TO BOLTS

$$
\begin{aligned}
& I=.375 \times 9^{3} / 12 \times Z=45.6 \mathrm{in}^{4} \\
& S=I / y=45.6 /\left(9 / 2=10.1 \mathrm{in}^{3}\right. \\
& Z=.375 \times 9^{2} / 4 \times 2=15.2 \mathrm{in}^{3} \\
& M=F_{y} Z=45 \mathrm{KS1} \mathrm{\times 15.2=683K=56.9K} \\
& M / \Omega=34 \mathrm{~K}^{\prime}>10.3 \mathrm{~K} 10 \mathrm{~K} \\
& \quad \text { © } 556 \mathrm{P}^{\prime}
\end{aligned}
$$

\qquad
\qquad Sheet: of: \qquad
\qquad ChkBy: \qquad
Contente: \qquad
1700 Wostldke Avenue North - Sulte 100 Seottle, Woshington 98109-6212 Telephone: [206] 281-7500 Focsimilic: [206] 281-4611
[800] 621-7300

CHELK PILE SPLICE (CONT)
checul perppenoicular to bolts: plate lolal blending* canve forcus por frll strevgito woso

$$
=(10.3 \mathrm{~K} /(1+12)=8.8 \mathrm{~K}
$$

$$
M=8.8 \times 1.33^{\prime} / 2 \text { sitess }
$$

$$
=5.9 k^{\prime}
$$

flat plate benoing
AT Angle $\theta=21^{\circ}$

$$
\begin{aligned}
& Z=.375^{2} \times 7 / 4=0.246 \mathrm{in}^{3} \\
& M_{N}=F_{y} Z=45 \mathrm{ks} 1 \times 0.246 \\
& =11.1 \mathrm{k}^{11}
\end{aligned}
$$

$$
M_{n} / \Omega=6.6 \mathrm{~K}^{*}>5.9 \mathrm{~K}^{\prime \prime} \mathrm{OK}
$$

GUPLE FARCE ALSO RESISTRD BY BOLTS

$$
\begin{aligned}
& z_{1}=1890^{\prime \prime} \\
& {C_{M}}^{\prime}=0.7 \\
& z_{L^{\prime}}=1320^{\prime \prime} \\
& M_{N}=1320 \times 12=15.9 \mathrm{~K}>5.9 \mathrm{~K}^{\prime \prime} 0 \mathrm{~K}
\end{aligned}
$$

+CHECK TO SEE IF C-SHAPE WILL PRY OPISN AT END wopd bsering langta $F_{C L}^{\prime}=230$ psi nOS os $L=8.8 / 2 / 230 / 7^{\prime \prime}=2.7^{\prime \prime}$

- -3/4 bolts suffilisut
\qquad
\qquad
\qquad c. 5. Chk.By: \qquad
Comp. By: \qquad Jet ski attachment \qquad

Per waterfront, 'Boat lifts international' Products will he used.
per manufactures recomandation, the framing should he designed for gravity loads only

$$
\begin{aligned}
& \omega=\left[60 \mathrm{psf}, \mathrm{~L}+8 \mathrm{psf}_{, 0}\right] * 0.72 \mathrm{ft}=43.2 \mathrm{P} / \mathrm{FF}_{, \mathrm{L}}+5.8 \mathrm{P} / \mathrm{F}_{\mathrm{D}} \mathrm{D} \\
& =49 \mathrm{PIF} \\
& M=\frac{\omega * L^{2}}{8}+\frac{P_{* a * t}}{l}=\frac{49 * 11.5^{\wedge 2}}{8}+\frac{1500 * 2.5 * 9}{11.5}=2935 \# t \\
& \text { PcT. } 4 \times 8 \text { DF No. } 1 \text { 0.K, Refer to } \mathrm{J} 2 \text { call. }
\end{aligned}
$$

PAOHITG

Supplementry Calculation Package 1

20088

Doug Rosen Residence - Revised Pier Framing Design

5995 SE $30^{\text {th }}$ Street
Mercer Island, Washington 98040

$12 / 1 / 2020$
The following calculations are revisions to the original calculation package titled ‘Doug Rosen Residence - Pier \& Pile Design’ dated July $7^{\text {th }}, 2020$.
The engineering seal on these calculations are for the design of pier steel cap beams to match the existing height of the pier.
The calculations ahead replace the same sections of the originall calculation package.
Design is in accordance with the 2015 International Building Code and 2015 International Existing Building Code.
The site information, dimensions, and plan layout, has been provided to us by Waterfiront Construction, Inc.
\qquad 20088 \qquad Nov 20,2020 sheet:
\qquad
Contents: \qquad Scope, B1 \& B6 design summary

Scope
client wants to use steel cap beam framing to match the existing height of the pier.

Re design beams. B1, B6 \& B7 commectiom
BI

$$
\text { clear span }=14.2^{\prime}
$$

Demand

$$
\begin{aligned}
& \omega=375 \mathrm{PIf}, \mathrm{~L}+50 \mathrm{Plf}, \mathrm{D} \\
& M=10,712 \mathrm{fft}
\end{aligned}
$$

use $w \sigma^{\prime} \times 16$, Refer to call attached
Bb

$$
\begin{aligned}
& \omega_{1}=259 \mathrm{PPF}, L+34 \mathrm{PIF}, \mathrm{D} \\
& \omega_{2}=408 \mathrm{PIF}, L+54 \mathrm{PF}, \mathrm{D}
\end{aligned}
$$

use $M 66 \times 15.3$, Refer to call attached

Job Number: 20088

Member I.D.:
B1

AISC 360-10 - section F2
Double symmetric compact l-shaped members and channels bent about their major axis

Member	W6X16	must be a compact member
Fy	50 ksi	
Type of Member	Doubly symmetric 1-shapes	
E	29000 KSI	
M_max	$10712.1 \mathrm{lb}-\mathrm{ft}$	absolute value of maximun moment in the unbraced segment
M_A	8034.1 lb-ft	absolute value of moment at quarter point of the unbraced segment
M_B	10712.1 lb -ft	absolute value of moment at centerline of unbraced segment
M_C	$8034.1 \mathrm{lb}-\mathrm{ft}$	absolute value of moment at three-quarter point of the unbraced segment
Lb	170.4 in	length between points that are either braced against lateral displacement of the compression flange or braced against twist of the cross section
$\mathrm{Mn} / \Omega_{\text {_ }} \mathrm{b}$	20056.7 lbs-ft	Pass: M_capacity <= M_demand
Lp	40.988 in	
Lr	169.104 in	
Cb	1.136	
Zx	11.700 in^3	
ry	0.967 in	
Cw	$38.200 \mathrm{in}^{\wedge} 6$	
ly	$4.430 \mathrm{in}^{\wedge} 4$	
Sx	10.200 in^3	
r_ts	1.129 in	
d	6.280 in	
tf	0.405 in	
h_0	5.875 in	
c	1.000	
J	$0.223 \mathrm{in}^{\wedge} 4$	

c, Inelastic lateral torsional buckling coefficient	
	c
Doubly symmetric I-shapes	
Channels	1.00

F_cr 39.41 ksi
ת_b $\quad 1.67$
$\mathrm{Lb}<=\mathrm{Lp}$
$\mathrm{Mn}=\mathrm{Mp}$
585.0 K-in

Lp<Lb<=Lr
$\mathrm{Mn}<=\mathrm{Mp} \quad$ 403.1 K-in
$\min (\mathrm{Mn}, \mathrm{Mp}) \quad$ 403.1 K-in

Lb>Lr
Mn <= Mp 401.9 K-in
$\min (M n, M p)$
401.9 K-in

Mn
401.9 K-in
$\mathrm{Mn} / \Omega_{-} \mathrm{b}$
240.7 K-in
33588.4 lbs-ft
33494.6 lbs-ft
33494.6 lbs-ft
20056.7 lbs-ft

Job Number:	20088
Member I.D.:	B6

AISC 360-10 - section F2
Double symmetric compact I-shaped members and channels bent about their major axis

Member	MC6x15.3	must be a compact member
Fy	50 ksi	
Type of Member	Channels	
E	29000 KSI	
M_max	$5704.4 \mathrm{lb}-\mathrm{ft}$	absolute value of maximun moment in the unbraced segment
M_A	$4368.7 \mathrm{lb}-\mathrm{ft}$	absolute value of moment at quarter point of the unbraced segment
M_B	$542.9 \mathrm{lb}-\mathrm{ft}$	absolute value of moment at centerline of unbraced segment
M_C	$1383.2 \mathrm{lb}-\mathrm{ft}$	absolute value of moment at three-quarter point of the unbraced segment
		length between points that are either braced against lateral displacement of the
Lb	270 in	compression flange or braced against twist of the cross section
$\mathrm{Mn} / \Omega_{-} \mathrm{b}$	23678.0 lbs-ft	Pass: M_capacity <= M_demand
Lp	44.506 in	
Lr	208.156 in	
Cb	2.117	
Zx	$9.910 \mathrm{in}^{\wedge} 3$	
ry	1.050 in	
Cw	30.000 in^6	
Ix	25.300 in^4	
ly	4.910 in^4	
Sx	8.440 in^3	
r_ts	1.199 in	
h_0	5.620 in	
c	1.137	
J	0.223 in^4	

c, Inelastic lateral torsional buckling coefficient	
Doubly symmetric I-shapes	c
Channels	1

F_cr	56.22 ksi
$\Omega_{-} b$	1.67

Lb<=Lp
$\mathrm{Mn}=\mathrm{Mp}$
495.5 K-in 41291.7 lbs-ft

Lp<Lb<=Lr
$\mathrm{Mn}<=\mathrm{Mp} \quad$ 465.2 K-in
$\min (M n, M p)$
465.2 K-in

Lb>Lr
$\mathrm{Mn}<=\mathrm{Mp} \quad$ 474.5 K-in
$\min (\mathrm{Mn}, \mathrm{Mp}) \quad$ 474.5 K-in

Mn
474.5 K-in
284.1 K-in
39542.3 lbs-ft
39542.3 lbs-ft
23678.0 lbs-ft

\qquad
\qquad Sheet: \qquad Of: \qquad Comp. By: \qquad Chk.By: \qquad Contents: \qquad 137 connection. \qquad P. 206.281.7500 www.PacEngTech.com \qquad
B. 7 connection

$$
\begin{aligned}
& M=216.3 \# F t \\
& v=2215 \mathrm{~F}
\end{aligned}
$$

$$
\begin{aligned}
\text { Shear load per bolt } & =\sqrt{\left(\frac{216.3 .+t+12^{\omega} / r}{2.25^{\prime}}\right)^{2}+\left(\frac{2215 / t}{2}\right)^{2}} \\
& =11.6 \text { kip, per GolF }
\end{aligned}
$$

use (2) MC 6 $\times 15.3$ on either side of Pile, connect with (2) 3/4" ϕ A307 thru bots as illus trated alone A ISC Table 7-1
capacity of (I) $3 / 4^{\prime \prime} \phi \mathrm{A} 307$ bolt in double shear $=\frac{r_{m}}{\sqrt{2}}=11.9 \mathrm{kip}$ Refer to copy of table ahead

Table 7-1
 Available Shear Strength of Bolts, kips

Nominal Bolt Diameter, d, in.					5/		3/					1
Nominal Bolt Area, in. ${ }^{2}$					0.307		0.442		0.601		0.785	
ASTM Desig.	Thread Cond.	$\begin{gathered} F_{n n} / \Omega \\ (\mathbf{k s i}) \end{gathered}$	$\phi F_{n v}$ (ksi)	$\begin{array}{\|c} \text { Load- } \\ \text { ing } \end{array}$	r_{n} / Ω	ϕr_{n}						
		ASD	LRFD		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	N	27.0	40.5	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{gathered} 8.29 \\ 16.6 \end{gathered}$	$\begin{aligned} & 12.4 \\ & 24.9 \end{aligned}$	$\begin{aligned} & 11.9 \\ & 23.9 \end{aligned}$	$\begin{array}{r} 17.9 \\ 35.8 \\ \hline \end{array}$	$\begin{aligned} & 16.2 \\ & 32.5 \end{aligned}$	24.3	$\begin{aligned} & 21.2 \\ & 42.4 \end{aligned}$	$\begin{aligned} & 31.8 \\ & 63.6 \end{aligned}$
	X	34.0	51.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 10.4 \\ & 20.9 \end{aligned}$	$\begin{aligned} & 15.7 \\ & 31.3 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 30.1 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 45.1 \end{aligned}$	$\begin{aligned} & 20.4 \\ & 40.9 \end{aligned}$	$\begin{aligned} & 30.7 \\ & 61.3 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 53.4 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 80.1 \end{aligned}$
$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	34.0	51.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 10.4 \\ & 20.9 \end{aligned}$	$\begin{aligned} & 15.7 \\ & 31.3 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 30.1 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 45.1 \end{aligned}$	$\begin{array}{r} 20.4 \\ 40.9 \end{array}$	$\begin{aligned} & 30.7 \\ & 61.3 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 53.4 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 80.1 \end{aligned}$
	X	42.0	63.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 12.9 \\ & 25.8 \end{aligned}$	$\begin{aligned} & 19.3 \\ & 38.7 \end{aligned}$	$\begin{aligned} & 18.6 \\ & 37.1 \end{aligned}$	$\begin{aligned} & 27.8 \\ & 55.7 \end{aligned}$	$\begin{aligned} & 25.2 \\ & 50.5 \end{aligned}$	$\begin{aligned} & 37.9 \\ & 75.7 \end{aligned}$	$\begin{array}{r} 33.0 \\ 65.9 \end{array}$	$\begin{aligned} & 49.5 \\ & 98.9 \end{aligned}$
A307		13.5	20.3	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 4.14 \\ & 8.29 \end{aligned}$	$\begin{array}{\|c\|} \hline 6.23 \\ 12.5 \\ \hline \end{array}$	$\begin{gathered} 5.97 \\ 11.9 \end{gathered}$	$\begin{array}{r} 8.97 \\ 17.9 \\ \hline \end{array}$	$\begin{gathered} 8.11 \\ 16.2 \\ \hline \end{gathered}$	$\begin{aligned} & 12.2 \\ & 24.4 \end{aligned}$	$\begin{array}{r} 10.6 \\ 21.2 \\ \hline \end{array}$	$\begin{aligned} & 15.9 \\ & 31.9 \end{aligned}$
Nominal Bolt Diameter, d, in.					11/8		11/4		$13 / 8$		11/2	
Nominal Bolt Area, in. ${ }^{2}$					0.994		1.23		1.48		1.77	
ASTM Desig.	Thread Cond.	$\begin{gathered} F_{n v} / \Omega \\ (\mathbf{k s i}) \end{gathered}$	$\phi F_{n v}$ (ksi)	$\begin{array}{\|c} \text { Load- } \\ \text { ing } \end{array}$	r_{n} / Ω	ϕr_{n}						
		ASD	LRFD		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	N	27.0	40.5	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 26.8 \\ & 53.7 \end{aligned}$	$\begin{aligned} & 40.3 \\ & 80.5 \end{aligned}$	$\begin{aligned} & 33.2 \\ & 66.4 \end{aligned}$	$\begin{aligned} & 49.8 \\ & 99.6 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 79.9 \end{aligned}$	$\begin{gathered} 59.9 \\ 120 \end{gathered}$	$\begin{aligned} & 47.8 \\ & 95.6 \end{aligned}$	$\begin{array}{\|c} \hline 71.7 \\ 143 \end{array}$
	X	34.0	51.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 33.8 \\ & 67.6 \end{aligned}$	$\begin{array}{\|c\|} \hline 50.7 \\ 101 \end{array}$	$\begin{aligned} & 41.8 \\ & 83.6 \end{aligned}$	$\begin{gathered} \hline 62.7 \\ 125 \end{gathered}$	$\begin{array}{\|c} \hline 50.3 \\ 101 \end{array}$	$\begin{array}{\|c\|} \hline 75.5 \\ 151 \end{array}$	$\begin{aligned} & \hline 60.2 \\ & 120 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 90.3 \\ 181 \end{gathered}$
$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	34.0	51.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 33.8 \\ & 67.6 \end{aligned}$	$\begin{array}{\|c} \hline 50.7 \\ 101 \end{array}$	$\begin{aligned} & 41.8 \\ & 83.6 \end{aligned}$	$\begin{gathered} \hline 62.7 \\ 125 \end{gathered}$	$\begin{array}{\|c\|} \hline 50.3 \\ 101 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 75.5 \\ 151 \end{array}$	$\begin{gathered} \hline 60.2 \\ 120 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 90.3 \\ 181 \\ \hline \end{array}$
	, X	42.0	63.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 41.7 \\ & 83.5 \end{aligned}$	$\begin{array}{\|l} \hline 62.6 \\ 125 \end{array}$	$\begin{array}{\|c\|} \hline 51.7 \\ 103 \\ \hline \end{array}$	$\begin{gathered} \hline 77.5 \\ 155 \end{gathered}$	$\begin{array}{\|l\|} \hline 62.2 \\ 124 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 93.2 \\ 186 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 74.3 \\ 149 \\ \hline \end{array}$	$\begin{aligned} & 112 \\ & 223 \\ & \hline \end{aligned}$
A307	-	13.5	20.3	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 13.4 \\ & 26.8 \end{aligned}$	$\begin{aligned} & 20.2 \\ & 40.4 \end{aligned}$	$\begin{aligned} & 16.6 \\ & 33.2 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 49.9 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 40.0 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 60.1 \end{aligned}$	23.9	$\begin{aligned} & 35.9 \\ & 71.9 \end{aligned}$
ASD	LRFD	For end loaded connections greater than 38 in ., see AISC Specification Table J3.2 footnote b.										
$\Omega=2.00$	$\phi=0.75$											

